Almost primes in almost all very short intervals
نویسندگان
چکیده
We show that as soon h ? ? $h\rightarrow \infty$ with X $X \rightarrow , almost all intervals ( x ? log ] $(x-h\log X, x]$ ? / 2 $x \in (X/2, X]$ contain a product of at most two primes. In the proof we use Richert's weighted sieve, arithmetic information eventually coming from results Deshouillers and Iwaniec on averages Kloosterman sums.
منابع مشابه
Primes in Almost All Short Intervals
It is well known that Huxley’s density estimates [5] for the zeros of the Riemann zeta-function yield J(x, h) = o(xh2(log x)−2), but only for h ≥ x1/6(log x) , for some C > 0. The weaker result with h ≥ x1/6+ε is proved in Saffari and Vaughan [8], Lemma 5, and in [13], where an identity of Heath-Brown (Lemma 1 of [3]) is used. This paper is inspired by Heath-Brown’s extension [4] of Huxley’s Th...
متن کاملOn the symmetry of primes in almost all short intervals
– In this paper we study the symmetry of primes in almost all short intervals; by elementary methods (based on the Large Sieve) we give, for h x log x (c > 0, suitable), a non-trivial estimate for the mean-square (over N < x ≤ 2N) of an average of “symmetry sums”; these sums control the symmetry of the von-Mangoldt function in short intervals around x. We explicitly remark that our results are ...
متن کاملARE PSEUDOPRIMES FOR ALMOST ALL PRIMES p
It was proven by Emma Lehmer that for almost all odd primes p, F2p is a Fibonacci pseudoprime. In this paper, we generalize this result to Lucas sequences {Uk}. In particular, we find Lucas sequences {Uk} for which either U2p is a Lucas pseudoprime for almost all odd primes p or Up is a Lucas pseudoprime for almost all odd primes p.
متن کاملPrimes in almost all short intervals and the distribution of the zeros of the Riemann zeta-function
Abstract We study the relations between the distribution of the zeros of the Riemann zeta-function and the distribution of primes in “almost all” short intervals. It is well known that a relation like ψ(x)−ψ(x−y) ∼ y holds for almost all x ∈ [N, 2N ] in a range for y that depends on the width of the available zero-free regions for the Riemann zeta-function, and also on the strength of density b...
متن کاملSurfaces via Almost - Primes
Based on the result on derived categories on K3 surfaces due to Mukai and Orlov and the result concerning almost-prime numbers due to Iwaniec, we remark the following facts: (1) For any given positive integer N , there are N (mutually non-isomorphic) projective complex K3 surfaces such that their Picard groups are not isomorphic but their transcendental lattices are Hodge isometric, or equivale...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2022
ISSN: ['1469-7750', '0024-6107']
DOI: https://doi.org/10.1112/jlms.12592